

Solar Tres

First commercial molten salt central receiver plant 17 MW, 15 hrs storage, 6500 hrs/yr

Fuentes de Andalucía (Sevilla) – SPAIN

A long way

- Promoted initially by the Spanish company GHERSA, in association with NEXANT, and based in the Boeing receiver technology
- SENER joint the team in 2001
- For different reasons, Nexant and Boeing left the project.
- SENER assumed the promotion of the project and decided to launch a program to develop its own molten salt central receiver and to initiate the process of site location, permitting, etc.
- Funded with 5 M€by the EU 5th Frame Program. Present partners in the EU development program: SENER, GHERSA, Siemens and Saint Gobain
- Mid 2005 SENER and CIEMAT reached an agreement to jointly develop a testing program at the PSA for the SENER prototype panel. The testing campaign started end 2006 and is presently in its first phase

Present status

- The project is being developed by the special purpose company GEMASOLAR 2006 SA, 100% SENER
- GEMASOLAR has already secured the land rights and the electrical interconnection. Water and NG are available at the site. No permitting problems are expected
- Solar radiation data at the site have been recorded for more than one year. The site enjoys one of the highest radiation levels in Spain
- Testing of the molten salt panel at the PSA will validate the main receiver design parameters (flux, life, efficiency, etc.). The receiver system design will be finalized thereafter
- Basic design of the plant is under development by SENER
- Project construction is expected to start before the end of 2007.
- SENER will also be the EPC Contractor and provide receiver, molten salt thermal storage and heliostat technology.

The site

Municipality	y Fuentes de Andalucía ((Sevilla))
		, – – – – – – – – – – – – – – – – – – –	,

Solar radiation	2060 kWh/m²-yr

- Altitude 167 m above sea level
- Electrical connection
 Substation at Villanueva del Rey
- Gas connection Gas pipe-line Sevilla-Córdoba at about 4 km
- Underground water availability Demonstrated trough extensive tests
- Access
 Close to the main highway system

The advantages of Solar Tres

- Central receiver technology provides the possibility of operating with high steam conditions, leading to high thermal cycle efficiencies
- Molten salt as a working fluid allows for the collection, transport and storage of the thermal energy with also very high efficiencies through the high top and differential temperatures
- Compared with the storage system we have in Andasol, solar Tres will store three times more energy per kg of salt.
- Under this conditions, the large thermal storage capacity allows for very high utilization factors, above 70%
- The 12 to 15% hibridation with NG allowed by the Spanish regulations provides also an additional support to the reliability of the generation

Main data

Technical data				
Total mirror surface	298 000 m ²			
Number of heliostats	2590			
Field surface area	142 Ha			
Nominal receiver capacity	120 MWt			
Tower height	130 m			
Thermal storage capacity	15 hours			
Turbine capacity	17 MWe			
Annual normal direct radiation	2062 kWh/m²			

Operation		
Gross generated power	110 570 MWhe	
NG hibridation	15%	
Annual equivalent hours	6500 h/a	
Capacity factor	74%	

Plant optimization through SENSOL

- The plant configuration and the sizing of the different components and systems has been performed with SENSOL, a ray tracing based computer code developed by SENER.
- SENSOL is an extremely flexible and powerful tool to design and optimize solar plants, components and systems
- It allows the simulation of different plant operating strategies to maximize the plant output
- Its economical module analyzes the result of different plant configurations, looking for the minimum levelized energy cost, that is, maximizing the financial return
- It allows also for optimization of component parameters, like heliostat structure stiffness, mechanism pointing errors, etc

Receiver technology

- Molten salt central receiver of high thermal efficiency, able to operate at high fluxes without compromising life (at least 25 years)
- Advanced features
 - Receiver size optimized to minimize thermal losses in the plant
 - Small fluid cavities to maximize efficiency and minimize the costs of the receiver and the pumping power
 - Thin-walled conductions to improve efficiency
 - Design that minimizes pressure losses in the salt circuit >>optimization of number of panels and molten salt circuit routing
 - Innovative integral header and advanced header-tube nozzle (SENER patents) to improve reliability and life
 - High nickel alloy material with excellent mechanical properties to low cycle fatigue (LCF) and stress corrosion cracking (SCC)
 - Definition of procedure and operation modes to assure the receiver life and to optimize the plant efficiency

Molten salt thermal storage

Solar Tres will benefit from the experience SENER is gaining in the design and construction of the thermal storage for Andasol 1 and 2

Molten salt system components (valves, heat tracing, ...) are also being evaluated in the loop used for panel testing at the PSA

Heliostat technology

- SENER developed in the late 70's it first 36 m² heliostat, still working in the PSA
- For Solar Tres, a new, 120 m², optimized concept has been tested also at the PSA, including a SENER patented mechanism design
- The global heliostat design is the result of optimizing, for the combination of drive and structure, the balance stiffness/precision/cost

Other SENER projects and developments (1)

- Andasol 1 & 2, 2x50 MW, parabolic trough, 7 hrs molten salt thermal storage
 - Turn key Engineering,
 Procurement and Construction in
 Joint Venture with Cobra
- Abu Dhabi 20 MWt beam-down system demo plant, sponsored by MASDAR/Cosmo Oil.
 - Conceptual engineering phase for the JV Tokyo Tech (multi-ring technology) and Solar Hytech (Japan)

Other SENER projects and developments (2)

- Direct Steam Generation demo plant, parabolic troughs, 3.5 MW, in JV with CIEMAT, IDAE, Abengoa and Iberdrola.
- Feasibility study for a 100 MW central receiver plant
- Other receiver types
 - saturated steam cavity receiver
 - flat molten salt receiver for beamdown systems
- Stamped arm, torque tube trough structure (SENER patent)

